

So what are the challenges to a <u>new</u> grazing dairy farm...

- Land resources that are accessible
- Feeding decisions...
- Do hayfields make good pastures?
- "My animals stand at the fence and bellow to come back to the barn"
- "My milk production dropped and I can't cover my outstanding operating loans"
- Milk production varies from day to day...

New England Forage & Weed ID and Management Training Project

Other questions and concerns..

- "how to I supplement the cows to maintain production, body condition and reproduction efficiency?"
- "Can I group my cows like I do in the barn?"
- "What happens when the pastures dry up in the summer?"
- "Will dry matter intake go down?
- "What about water?"

ARE

New England Forage & Weed ID and Management Training Project

Dry Matter Intake.....why dry matter?

- Using dry matter removes water out of nutrient calculations, since many feeds fed to cows contain various amounts of water....
- 4500 pounds of 85% moisture pasture is how much dry matter?
- 4500 X 0.15 = 675 lbs dry matter
- While we care about water, we need to know the amount of nutrients going into the cow....amounts are always more important than percentages...

SARE

New England Forage & Weed ID and Management Training Project

Sheep	Percent Protein (CP)	Percent Energy (TDN)
Maintenance (154 lb. mature ewe)	9.6	57.6
Late Gestation 180-225% lamb crop expected	11.2	66.7
Lactation Nursing Twins	14.8	64.5
Early Weaned Lambs (66 lbs.) Moderate growth High Growth	14.5	75.8
Lamb Finishing 88 lbs., 4-7 mos of age	11.7	77.1
Yearlings (110 lbs.)	9.1	57.6

Why is DMI so important?

- 1 pound improved DMI will result in about 2 pounds extra milk for cow in early lactation and peak milk
- Every pound of milk at peak equals about 200 pounds of milk for the entire lactation.
- Maximum DMI at Peak for Holsteins on pasture alone is about 40 pounds...Can be about 53 or more if concentrates are added to the diet

SARE

New England Forage & Weed ID and Management Training Project

Factors that affecting Dry Matter Intake

- Animal factors
- --Size (wt) of animal...expressed as % of BW
- --Stage of Lactation
- --Milk yield and composition
- --Body Condition (gain or loss)
- --Stage of pregnancy

SARE

New England Forage & Weed ID and Management Training Project

Traditionally we think of two factors that limit or control intake...

- 1) Physical or "bulk fill"
 - 2) Chemical/chemostatic regulation

But in pastures...we find intake is limited by eating ability...how effective the cow harvests the pasture in the field!

New England Forage & Weed ID and Management Training Project

Major factor is the amount of feed/forage taken per bite! Grazing Time (minutes/day)* 500-700 min/day ** Biting Rate (bites/minute)* About 65/min ** Bite Mass (g intake/bite)* ** Primarily animal factors ** Primarily influenced by sward factors

Bite size is determined by grass height, the density of the sward and proportion of green leaf in the sward

New England Forage & Weed ID and Management Training Project

Pasture and Feed Factors that influence DMI

- Pasture quality (higher quality..higher NDFD...higher passage rate and intake of nutrients)
- · Pasture availability
- Sward Density
- Time allowed for grazing
- Supplement type and amount (increased total dry matter intake when pastures are supplemented with concentrates)
- Forage digestibility NDFD

Bite size is determined by grass height, the density of the sward and proportion of green leaf in the sward

New England Forage & Weed ID and Management Training Project

Don't forget environmental factors

- Temperature
- Humidity
- Rainfall
- · Availability of shade
- · Access to water

SARE

New England Forage & Weed ID and Management Training Project

PeNDF Physically effective NDF

- NDF that contributes to the forage mat for rumen integrity
- 5 lbs forage >1 inch
- 50 chews per cud
- 450 minutes of rumination/day

SARE

New England Forage & Weed ID and Management Training Project

F-NDF (oh yeah...another NDF term!!)

- Forage NDF is related to DMI...
- Average F-NDF of cows on pasture is about 1.1% to 1.3% of Body wt. of animal
- 1300 pound cow...that means she will eat about 14-17 pounds of F-NDF per day and produce about 45-55 pounds of milk (if forage quality is excellent)

New England Forage & Weed ID and Management Training Project

How do you sample pastures?

Table 1. Concentration of nutrients (dry matter basis) in orchardgrass harvester in October from the Northeast U.S. (data from Karen Hoffman, eOrganic eXtension Webinar 9/16/2010).

Total plant height was 9 inches	Crude Protein (%)	NDF (%)	NEL (Mcal/lb)
Top one-third	27.4	38.5	0.79
Middle one-third	22.9	44.6	0.76
Bottom one-third	14.0	60.0	0.67

New England Forage & Weed ID and Management Training Project

Balancing Rations

- •Pasture DMI is not known
- •Nutrient intake is not known (diet selection)
- •DM/nutrient intake may change from day to day
- •Pasture is usually energy deficient..protein surplus
- •No-grain farms???
- •Too much protein, particularly degradable protein

New England Forage & Weed ID and Management Training Project

Average nutrient composition for cool season grass pasture and legumes Predominately grass (cool seas Spring Summer Spring Summe Total protein (TP),%DM 21-25 18-22 22-26 20-24 RUPb. % of TP 20-25 25-30 20-25 25-30 NDF. %DM 40-45 48-55 30-36 35-45 NE, Mcal/lb, %DM Non fiber carbohydrate Ca, %DM .50-.75 1.1-1.3 P. %DM .30-.35 .30-.35 Mq, %DM .15-.20 .18-.24 aSummarized from Fales et al., 1995; Hoffman et al., 1993; Holden et al., 1994; Hongerholt et al., 1998; Kolver et al., 1998; Rayburn, 1991 ^bRumen undegradable protein Soluble protein New England Forage & Weed ID and Management Training Project

Use of energy for excretion of surplus N from soluble and NPN sources
Potentially detrimental to reproductive performance

 Utilize MUN (Milk Urea Nitrogen) or BUN (Blood Urea Nitrogen) as a monitor

SARE

New England Forage & Weed ID and Management Training Project

Spartan Ration Balancer

For 65 lbs of milk (3.5 FCM) - 1400 lb cow

Requirement 44 lbs of pasture dry matter provides

CP 7.2 lbs Ne_L 33 Mcals NSC 16.8 lbs 10.12 lbs CP 33.44 Mcals Ne_L 7.92 lbs NSC

SARE

New England Forage & Weed ID and Management Training Project

Carbohydrate (Grain) Supplementation of Pasture

- Provides fermentable carbohydrate in the rumen to utilize N and increase rumen microbial yield
- Increase milk yield
 - -Increase N output in milk
- Decrease urinary N excretion
- Decrease milk urea nitrogen
- Income over feed costs

New England Forage & Weed ID and Management Training Project

Accounting for Pasture

- Ration needs to be adjusted
 - Both amounts of other feeds and nutrients supplied
 - Why pasture samples are helpful
- Nutritionists struggle
 - "Don't know what or how much they're eating"
 - "Can't balance a ration"

New England Forage & Weed ID and Management Training Project

Systems

- Total mixed ration ("TMR")
 - All forages and grain mixed together so every bite is "complete"
 Different TMR's for different production groups
 - Becomes a partial TMR during grazing season
- · Component feeding
 - Each forage and grain fed individually
 - Amounts can be tailored to each cows' needs
 - Many trips around the barn

New England Forage & Weed ID and Management Training Project

Accounting for Supplement

- Substitution effect of supplement
 - · Decreases amount of pasture consumed
 - Forages 1:1 substitution
 - Grain 1:0.5 substitution

New England Forage & Weed ID and Management Training Project

Mike Hutjens pasture guidelines

- If you want 90% of expected milk production...feed 50% of DMI from quality pasture
- If you want 75% of expected production....
 feed 75% of DMI from quality pasture
- If you want 50% of expected production...... feed 90% of DMI from pasture

New England Forage & Weed ID and Management Training Project

Minerals - where and how do they fit in?

- Usually look at Ca, P, Mg, S, Cu, Zn, Se and salt
- Mg is essential to reduce risk of grass tetany (dolomitic limestone)
- Most producers supplement with commercial 2:1 mix (Ca to Phos)
- · Free choice?

SARE

New England Forage & Weed ID and Management Training Project

Questions?? New England Forage & Weed ID and Management Training Project

Rumen Physiology Two types of bacteria Fiber digester – cellulytic – higher when fed high forage diets. Most active pH >6 Starch digester – amylolytic – higher when fed high grain/starch diets. Most active pH 5-6 Anything affecting rumen pH affects rumen function and how feeds are digested

Rumen Physiology

 Balance between acid production and removal as well as the buffers available to neutralize acids

- Rapid carbohydrate digestion

 rapid VFA

 production that exceeds removal and
 decrease in pH reducing forage digestion and
 reduces intake because of fill. Look at CHO
 availability
- Saliva is a major source of buffer (Bicarbonate and phosphate ions)

New England Forage & Weed ID and Management Training Project

